AI - podejście pragmatyczne
Opanuj skuteczne, gotowe do użycia rozwiązania biznesowe dla sztucznej inteligencji i uczenia maszynowego AI podejście pragmatyczne pomaga rozwiązywać praktyczne problemy przy użyciu nowoczesnego uczenia maszynowego, sztucznej inteligencji i chmurowych narzędzi obliczeniowych. Noah Gift demistyfikuje wszelkie koncepcje i narzędzia potrzebne do osiągnięcia wyników nawet jeśli Czytelnik nie ma solidnego przygotowania z matematyki lub data science. Autor wyjaśnia skuteczne, gotowe do użycia rozwiązania udostępniane przez Amazon, Google i Microsoft oraz demonstruje sprawdzone techniki wykorzystujące ekosystem analizy danych oparty na języku Python. Proponowane podejścia i przykłady pomagają ukierunkować i uprościć każdy krok od wdrożenia po produkcję i budować rozwiązania o niezwykłych możliwościach skalowania. W miarę poznawania działania rozwiązań Machine Language (ML) będziesz uzyskiwać coraz bardziej intuicyjne zrozumienie tego, co można dzięki nim osiągnąć i jak zmaksymalizować ich wartość. Na tych podstawach autor krok po kroku prezentuje budowanie chmurowych aplikacji AI/ML do rozwiązywania realistycznych problemów w dziedzinie marketingu, zarządzania projektami, wyceniania produktów, nieruchomości i dużo więcej. Bez względu na to, czy jesteś profesjonalistą biznesowym, osobą decyzyjną, studentem czy programistą, eksperckie wskazówki autora i rozbudowane analizy przypadków przygotują cię do rozwiązywania problemów data science w niemal dowolnym środowisku. Uzyskaj i skonfiguruj wszystkie potrzebne narzędzia Szybko przejrzyj wszystkie funkcjonalności Pythona, których potrzebujesz do budowania aplikacji uczenia maszynowego Opanuj narzędzia AI i ML oraz cykl życia projektu Korzystaj z narzędzi analitycznych Pythona, takich jak IPython, Pandas, Numpy, Juypter Notebook i Sklearn Dołącz pragmatyczną pętlę zwrotną, która pozwoli nieustannie poprawiać wydajność naszych procedur i systemów Projektuj chmurowe rozwiązania AI oparte na Google Cloud Platform, uwzględniając usługi TPU, Colaboratory i Datalab Definiuj chmurowe przepływy pracy w Amazon Web Services, w tym wystąpienia punktowe, potoki kodu i inne Pracuj z API sztucznej inteligencji w Microsoft Azure Poznaj budowanie sześciu rzeczywistych aplikacji AI od początku do końca
Recommended Comments
There are no comments to display.
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now